Plant cells oxidize hydroxylamines to NO

نویسندگان

  • Stefan Rümer
  • Kapuganti Jagadis Gupta
  • Werner M. Kaiser
چکیده

Plants are known to produce NO via the reduction of nitrite. Oxidative NO production in plants has been considered only with respect to a nitric oxide synthase (NOS). Here it is shown that tobacco cell suspensions emitted NO when hydroxylamine (HA) or salicylhydroxamate (SHAM), a frequently used AOX inhibitor, was added. N(G)-hydroxy-L-arginine, a putative intermediate in the NOS-reaction, gave no NO emission. Only a minor fraction (< or = 1%) of the added HA or SHAM was emitted as NO. Production of NO was decreased by anoxia or by the addition of catalase, but was increased by conditions inducing reactive oxygen (ROS) or by the addition of hydrogen peroxide. Cell-free enzyme solutions generating superoxide or hydrogen peroxide also led to the formation of NO from HA or (with lower rates) from SHAM, and nitrite was also an oxidation product. Unexpectedly, the addition of superoxide dismutase (SOD) to cell suspensions stimulated NO formation from hydroxylamines, and SOD alone (without cells) also catalysed the production of NO from HA or SHAM. NO production by SOD plus HA was higher in nitrogen than in air, but from SOD plus SHAM it was lower in nitrogen. Thus, SOD-catalysed NO formation from SHAM and from HA may involve different mechanisms. While our data open a new possibility for oxidative NO formation in plants, the existence and role of these reactions under physiological conditions is not yet clear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of excess urinary nitrate in the rat.

The ability of intestinal microorganisms to N-oxidize nitrogenous compounds to nitrite or nitrate was evaluated both in vivo and in vitro. Nitrate balance studies with germ-free and conventional rats indicated that the host and not the microbial flora is responsible for excess urinary nitrate. In vitro studies showed that most intestinal microorganisms are not able to N-oxidize nitrogenous comp...

متن کامل

Oxidation of Meloxicam by Streptomyces griseus

The aim of the present investigation was to biotransform the anti-inflammatory compound meloxicam by enzymes present in whole cells of five actinomycete cultures to produce novel bioactive derivatives. Among the actinomycetes screened, Streptomyces griseus NCIM 2622 was found to possess the enzyme system(s) that oxidize meloxicam into two metabolites whereas that present in S. griseus NCIM 2623...

متن کامل

Complementation studies of isovaleric acidemia and glutaric aciduria type II using cultured skin fibroblasts.

Using cultured skin fibroblasts, we studied the heterogeneity of inborn errors of leucine metabolism such as isovaleric acidemia (IVA), glutaric aciduria type II (GA II), and multiple carboxylase deficiency (MC). We first developed a simple macromolecular-labeling test to measure the ability of cells to oxidize [1-14C]isovaleric acid in situ in culture. Cells from two different lines were fused...

متن کامل

Nitrone protecting groups for enantiopure N-hydroxyamino acids: synthesis of N-terminal peptide hydroxylamines for chemoselective ligations.

The synthesis of enantiopure N-benzylidene nitrones of N-hydroxy-alpha-amino acids and their incorporation using standard Fmoc-based peptide chemistry into solid-supported peptide chains is described. Deprotection and resin cleavage affords N-terminal peptide hydroxylamines, which are the key substrates for chemoselective ligations with C-terminal peptide alpha-ketoacids. This general route is ...

متن کامل

Promotion of seed germination by nitrate, nitrite, hydroxylamine, and ammonium salts.

Action and uptake of azides, nitrates, nitrites, hydroxylamines, and ammonium salts were measured on germination of Amaranthus albus, Lactuca sativa, Phleum pratense, Barbarea vulgaris, B. verna, and Setaria glauca seeds. Nitrate and nitrite reductase activities were measured in vivo for each of these kinds of seeds. Activities were measured in vitro for catalase, peroxidase, glycolate oxidase,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Experimental Botany

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009